Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge.
نویسندگان
چکیده
Dermcidin (DCD) is a recently described antimicrobial peptide, which is constitutively expressed in eccrine sweat glands and transported via sweat to the epidermal surface. By postsecretory proteolytic processing in sweat the dermcidin protein gives rise to several truncated DCD peptides which differ in length and net charge. In order to understand the mechanism of antimicrobial activity, we analyzed the spectrum of activity of several naturally processed dermcidin-derived peptides, the secondary structure in different solvents, and the ability of these peptides to interact with or permeabilize the bacterial membrane. Interestingly, although all naturally processed DCD peptides can adopt an alpha-helical conformation in solvents, they have a diverse and partially overlapping spectrum of activity against gram-positive and gram-negative bacteria. This indicates that the net charge and the secondary structure of the peptides are not important for the toxic activity. Furthermore, using carboxyfluorescein-loaded liposomes, membrane permeability studies and electron microscopy we investigated whether DCD peptides are able to permeabilize bacterial membranes. The data convincingly show that irrespective of charge the different DCD peptides are not able to permeabilize bacterial membranes. However, bacterial mutants lacking specific cell envelope modifications exhibited different susceptibilities to killing by DCD peptides than wild-type bacterial strains. Finally, immunoelectron microscopy studies indicated that DCD peptides are able to bind to the bacterial surface; however, signs of membrane perturbation were not observed. These studies indicate that DCD peptides do not exert their activity by permeabilizing bacterial membranes.
منابع مشابه
The Human Antimicrobial Peptides Dermcidin and LL-37 Show Novel Distinct Pathways in Membrane Interactions
Mammals protect themselves from inflammation triggered by microorganisms through secretion of antimicrobial peptides (AMPs). One mechanism by which AMPs kill bacterial cells is perforating their membranes. Membrane interactions and pore formation were investigated for α-helical AMPs leading to the formulation of three basic mechanistic models: the barrel stave, toroidal, and carpet model. One m...
متن کاملVariations in the interaction of human defensins with Escherichia coli: Possible implications in bacterial killing
Human α and β-defensins are cationic antimicrobial peptides characterized by three disulfide bonds with a triple stranded β-sheet motif. It is presumed that interaction with the bacterial cell surface and membrane permeabilization by defensins is an important step in the killing process. In this study, we have compared interactions of three human α-defensins HNP3, HNP4, HD5 and human β-defensin...
متن کاملDermcidin-derived peptides show a different mode of action than the cathelicidin LL-37 against Staphylococcus aureus.
Dermcidin (DCD) is an antimicrobial peptide which is constitutively expressed in eccrine sweat glands. By postsecretory proteolytic processing in sweat, the DCD protein gives rise to anionic and cationic DCD peptides with a broad spectrum of antimicrobial activity. Many antimicrobial peptides induce membrane permeabilization as part of their killing mechanism, which is accompanied by a loss of ...
متن کاملThe multiple facets of dermcidin in cell survival and host defense.
Eccrine sweat glands, which are distributed over the whole bodies of primates and humans, have long been regarded mainly to have a function in thermoregulation. However, the discovery of dermcidin-derived antimicrobial peptides in eccrine sweat demonstrated that sweat actively participates in the constitutive innate immune defense of human skin against infection. In the meantime, a number of st...
متن کاملInfluence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides.
To investigate the influence of proline residues on the activity of alpha-helical peptides, variants were synthesized with insertions of proline residues to create peptides without proline, or with one or two prolines. The influence of the proline-induced bends was assessed by circular dichroism in the presence of liposomes, and the ability of the peptides to kill microorganisms, to permeabiliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 50 8 شماره
صفحات -
تاریخ انتشار 2006